Greedy approximation in convex optimization

نویسنده

  • V. N. Temlyakov
چکیده

We study sparse approximate solutions to convex optimization problems. It is known that in many engineering applications researchers are interested in an approximate solution of an optimization problem as a linear combination of elements from a given system of elements. There is an increasing interest in building such sparse approximate solutions using different greedy-type algorithms. The problem of approximation of a given element of a Banach space by linear combinations of elements from a given system (dictionary) is well studied in nonlinear approximation theory. At a first glance the settings of approximation and optimization problems are very different. In the approximation problem an element is given and our task is to find a sparse approximation of it. In optimization theory an energy function is given and we should find an approximate sparse solution to the minimization problem. It turns out that the same technique can be used for solving both problems. We show how the technique developed in nonlinear approximation theory, in particular, the greedy approximation technique can be adjusted for finding a sparse solution of an optimization problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Greedy expansions in convex optimization

This paper is a follow up to the previous author’s paper on convex optimization. In that paper we began the process of adjusting greedytype algorithms from nonlinear approximation for finding sparse solutions of convex optimization problems. We modified there three the most popular in nonlinear approximation in Banach spaces greedy algorithms – Weak Chebyshev Greedy Algorithm, Weak Greedy Algor...

متن کامل

A General Greedy Approximation Algorithm with Applications

Greedy approximation algorithms have been frequently used to obtain sparse solutions to learning problems. In this paper, we present a general greedy algorithm for solving a class of convex optimization problems. We derive a bound on the rate of approximation for this algorithm, and show that our algorithm includes a number of earlier studies as special cases.

متن کامل

SIZE AND GEOMETRY OPTIMIZATION OF TRUSS STRUCTURES USING THE COMBINATION OF DNA COMPUTING ALGORITHM AND GENERALIZED CONVEX APPROXIMATION METHOD

In recent years, the optimization of truss structures has been considered due to their several applications and their simple structure and rapid analysis. DNA computing algorithm is a non-gradient-based method derived from numerical modeling of DNA-based computing performance by new computers with DNA memory known as molecular computers. DNA computing algorithm works based on collective intelli...

متن کامل

Dual Greedy Algorithm for Conic Optimization Problem

In the paper we propose an algorithm for nding approximate sparse solutions of convex optimization problem with conic constraints and examine convergence properties of the algorithm with application to the index tracking problem and unconstrained l1-penalized regression.

متن کامل

Greedy Strategies for Convex Optimization

We investigate two greedy strategies for finding an approximation to the minimum of a convex function E defined on a Hilbert space H. We prove convergence rates for these algorithms under suitable conditions on the objective function E. These conditions involve the behavior of the modulus of smoothness and the modulus of uniform convexity of E.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012